
Chapter 12

Data Envelopment Analysis

Data Envelopment Analysis (DEA) is an increasingly popular management tool. This write-up is
an introduction to Data Envelopment Analysis (DEA) for people unfamiliar with the technique.
For a more in-depth discussion of DEA, the interested reader is referred to Seiford and Thrall [1990]
or the seminal work by Charnes, Cooper, and Rhodes [1978].

DEA is commonly used to evaluate the e�ciency of a number of producers. A typical statistical
approach is characterized as a central tendency approach and it evaluates producers relative to an
average producer In contrast, DEA compares each producer with only the "best" producers. By
the way, in the DEA literature, a producer is usually referred to as a decision making unit or DMU.
DEA is not always the right tool for a problem but is appropriate in certain cases. (See Strengths
and Limitations of DEA.)

In DEA, there are a number of producers. The production process for each producer is to take
a set of inputs and produce a set of outputs. Each producer has a varying level of inputs and gives
a varying level of outputs. For instance, consider a set of banks. Each bank has a certain number
of tellers, a certain square footage of space, and a certain number of managers (the inputs). There
are a number of measures of the output of a bank, including number of checks cashed, number of
loan applications processed, and so on (the outputs). DEA attempts to determine which of the
banks are most e�cient, and to point out speci�c ine�ciencies of the other banks.

A fundamental assumption behind this method is that if a given producer, A, is capable of
producing Y(A) units of output with X(A) inputs, then other producers should also be able to
do the same if they were to operate e�ciently. Similarly, if producer B is capable of producing
Y(B) units of output with X(B) inputs, then other producers should also be capable of the same
production schedule. Producers A, B, and others can then be combined to form a composite
producer with composite inputs and composite outputs. Since this composite producer does not
necessarily exist, it is typically called a virtual producer.

The heart of the analysis lies in �nding the "best" virtual producer for each real producer. If
the virtual producer is better than the original producer by either making more output with the
same input or making the same output with less input then the original producer is ine�cient. The
subtleties of DEA are introduced in the various ways that producers A and B can be scaled up or
down and combined.

12.1 Numerical Example

To illustrate how DEA works, let's take an example of three banks. Each bank has exactly 10
tellers (the only input), and we measure a bank based on two outputs: Checks cashed and Loan
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148 CHAPTER 12. DATA ENVELOPMENT ANALYSIS

applications. The data for these banks is as follows:

� Bank A: 10 tellers, 1000 checks, 20 loan applications

� Bank B: 10 tellers, 400 checks, 50 loan applications

� Bank C: 10 tellers, 200 checks, 150 loan applications

Now, the key to DEA is to determine whether we can create a virtual bank that is better than
one or more of the real banks. Any such dominated bank will be an ine�cient bank.

Consider trying to create a virtual bank that is better than Bank A. Such a bank would use no
more inputs than A (10 tellers), and produce at least as much output (1000 checks and 20 loans).
Clearly, no combination of banks B and C can possibly do that. Bank A is therefore deemed to be
e�cient. Bank C is in the same situation.

However, consider bank B. If we take half of Bank A and combine it with half of Bank C, then
we create a bank that processes 600 checks and 85 loan applications with just 10 tellers. This
dominates B (we would much rather have the virtual bank we created than bank B). Bank B is
therefore ine�cient.

Another way to see this is that we can scale down the inputs to B (the tellers) and still have at
least as much output. If we assume (and we do), that inputs are linearly scalable, then we estimate
that we can get by with 6.3 tellers. We do that by taking .34 times bank A plus .29 times bank B.
The result uses 6.3 tellers and produces at least as much as bank B does. We say that bank B's
e�ciency rating is .63. Banks A and C have an e�ciency rating of 1.

12.2 Graphical Example

The single input two-output or two input-one output problems are easy to analyze graphically.
The previous numerical example is now solved graphically. (An assumption of constant returns to
scale is made and explained in detail later.) The analysis of the e�ciency for bank B looks like the
following:
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If it is assumed that convex combinations of banks are allowed, then the line segment connecting
banks A and C shows the possibilities of virtual outputs that can be formed from these two banks.
Similar segments can be drawn between A and B along with B and C. Since the segment AC lies
beyond the segments AB and BC, this means that a convex combination of A and C will create
the most outputs for a given set of inputs.

This line is called the e�ciency frontier. The e�ciency frontier de�nes the maximum combina-
tions of outputs that can be produced for a given set of inputs.

Since bank B lies below the e�ciency frontier, it is ine�cient. Its e�ciency can be determined
by comparing it to a virtual bank formed from bank A and bank C. The virtual player, called V,
is approximately 54% of bank A and 46% of bank C. (This can be determined by an application
of the lever law. Pull out a ruler and measure the lengths of AV, CV, and AC. The percentage of
bank C is then AV/AC and the percentage of bank A is CV/AC.)

The e�ciency of bank B is then calculated by �nding the fraction of inputs that bank V would
need to produce as many outputs as bank B. This is easily calculated by looking at the line from
the origin, O, to V. The e�ciency of player B is OB/OV which is approximately 63%. This �gure
also shows that banks A and C are e�cient since they lie on the e�ciency frontier. In other words,
any virtual bank formed for analyzing banks A and C will lie on banks A and C respectively.
Therefore since the e�ciency is calculated as the ratio of OA/OV or OA/OV, banks A and C will
have e�ciency scores equal to 1.0.

The graphical method is useful in this simple two dimensional example but gets much harder in
higher dimensions. The normal method of evaluating the e�ciency of bank B is by using an linear
programming formulation of DEA.

Since this problem uses a constant input value of 10 for all of the banks, it avoids the com-
plications caused by allowing di�erent returns to scale. Returns to scale refers to increasing or
decreasing e�ciency based on size. For example, a manufacturer can achieve certain economies of
scale by producing a thousand circuit boards at a time rather than one at a time - it might be only
100 times as hard as producing one at a time. This is an example of increasing returns to scale
(IRS.)

On the other hand, the manufacturer might �nd it more than a trillion times as di�cult to
produce a trillion circuit boards at a time though because of storage problems and limits on the
worldwide copper supply. This range of production illustrates decreasing returns to scale (DRS.)
Combining the two extreme ranges would necessitate variable returns to scale (VRS.)

Constant Returns to Scale (CRS) means that the producers are able to linearly scale the inputs
and outputs without increasing or decreasing e�ciency. This is a signi�cant assumption. The
assumption of CRS may be valid over limited ranges but its use must be justi�ed. As an aside,
CRS tends to lower the e�ciency scores while VRS tends to raise e�ciency scores.

12.3 Using Linear Programming

Data Envelopment Analysis, is a linear programming procedure for a frontier analysis of inputs and
outputs. DEA assigns a score of 1 to a unit only when comparisons with other relevant units do not
provide evidence of ine�ciency in the use of any input or output. DEA assigns an e�ciency score
less than one to (relatively) ine�cient units. A score less than one means that a linear combination
of other units from the sample could produce the same vector of outputs using a smaller vector of
inputs. The score reects the radial distance from the estimated production frontier to the DMU
under consideration.
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There are a number of equivalent formulations for DEA. The most direct formulation of the
exposition I gave above is as follows:

Let Xi be the vector of inputs into DMU i. Let Yi be the corresponding vector of outputs. Let
X0 be the inputs into a DMU for which we want to determine its e�ciency and Y0 be the outputs.
So the X 's and the Y 's are the data. The measure of e�ciency for DMU0 is given by the following
linear program:

Min �

s:t:
P

�iXi � �X0P
�iYi � Y0

� � 0

where �i is the weight given to DMU i in its e�orts to dominate DMU 0 and � is the e�ciency
of DMU 0. So the �'s and � are the variables. Since DMU 0 appears on the left hand side of
the equations as well, the optimal � cannot possibly be more than 1. When we solve this linear
program, we get a number of things:

1. The e�ciency of DMU 0 (�), with � = 1 meaning that the unit is e�cient.

2. The unit's \comparables" (those DMU with nonzero �).

3. The \goal" inputs (the di�erence between X0 and
P

�iXi)

4. Alternatively, we can keep inputs �xed and get goal outputs (1
�

P
i Yi)

DEA assumes that the inputs and outputs have been correctly identi�ed. Usually, as the number
of inputs and outputs increase, more DMUs tend to get an e�ciency rating of 1 as they become
too specialized to be evaluated with respect to other units. On the other hand, if there are too few
inputs and outputs, more DMUs tend to be comparable. In any study, it is important to focus on
correctly specifying inputs and outputs.

Example 12.3.1 Consider analyzing the e�ciencies of 3 DMUs where 2 inputs and 3 outputs are

used. The data is as follows:

DMU Inputs Outputs

1 5 14 9 4 16

2 8 15 5 7 10

3 7 12 4 9 13

The linear programs for evaluating the 3 DMUs are given by:

� LP for evaluating DMU 1:

min THETA

st

5L1+8L2+7L3 - 5THETA <= 0

14L1+15L2+12L3 - 14THETA <= 0

9L1+5L2+4L3 >= 9

4L1+7L2+9L3 >= 4

16L1+10L2+13L3 >= 16

L1, L2, L3 >= 0
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� LP for evaluating DMU 2:

min THETA

st

5L1+8L2+7L3 - 8THETA <= 0

14L1+15L2+12L3 - 15THETA <= 0

9L1+5L2+4L3 >= 5

4L1+7L2+9L3 >= 7

16L1+10L2+13L3 >= 10

L1, L2, L3 >= 0

� LP for evaluating DMU 3:

min THETA

st

5L1+8L2+7L3 - 7THETA <= 0

14L1+15L2+12L3 - 12THETA <= 0

9L1+5L2+4L3 >= 4

4L1+7L2+9L3 >= 9

16L1+10L2+13L3 >= 13

L1, L2, L3 >= 0

The solution to each of these is as follows:

� DMU 1.

Adjustable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficien Increase Decrease

$B$10 theta 1 0 1 1E+30 1

$B$11 L1 1 0 0 0.92857142 0.619047619

$B$12 L2 0 0.24285714 0 1E+30 0.242857143

$B$13 L3 0 0 0 0.36710963 0.412698413

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$B$16 IN1 -0.103473 0 0 1E+30 0

$B$17 IN2 -0.289724 -0.07142857 0 0 1E+30

$B$18 OUT1 9 0.085714286 9 0 0

$B$19 OUT2 4 0.057142857 4 0 0

$B$20 OUT3 16 0 16 0 1E+30
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� DMU 2.

Adjustable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficien Increase Decrease

$B$10 theta 0.773333333 0 1 1E+30 1

$B$11 L1 0.261538462 0 0 0.866666667 0.577777778

$B$12 L2 0 0.22666667 0 1E+30 0.226666667

$B$13 L3 0.661538462 0 0 0.342635659 0.385185185

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$B$16 IN1 -0.24820512 0 0 1E+30 0.248205128

$B$17 IN2 -0.452651 -0.0666667 0 0.46538461 1E+30

$B$18 OUT1 5 0.08 5 10.75 0.655826558

$B$19 OUT2 7 0.0533333 7 1.05676855 3.41509434

$B$20 OUT3 12.78461538 0 10 2.78461538 1E+30

� DMU 3.

Adjustable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficien Increase Decrease

$B$10 theta 1 0 1 1E+30 1

$B$11 L1 0 0 0 1.08333333 0.722222222

$B$12 L2 0 0.283333333 0 1E+30 0.283333333

$B$13 L3 1 0 0 0.42829457 0.481481481

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$B$16 IN1 -0.559375 0 0 1E+30 0

$B$17 IN2 -0.741096 -0.08333333 0 0 1E+30

$B$18 OUT1 4 0.1 4 16.25 0

$B$19 OUT2 9 0.066666667 9 0 0

$B$20 OUT3 13 0 13 0 1E+30

Note that DMUs 1 and 3 are overall e�cient and DMU 2 is ine�cient with an e�ciency rating
of 0.773333.

Hence the e�cient levels of inputs and outputs for DMU 2 are given by:

� E�cient levels of Inputs:
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� E�cient levels of Outputs:

0:261538

2
64 9

4
16

3
75+ 0:661538

2
64 4

9
13

3
75 =

2
64 5

7
12:785

3
75

Note that the outputs are at least as much as the outputs currently produced by DMU 2 and
inputs are at most as big as the 0.773333 times the inputs of DMU 2. This can be used in two
di�erent ways: The ine�cient DMU should target to cut down inputs to equal at most the e�cient
levels. Alternatively, an equivalent statement can be made by �nding a set of e�cient levels of
inputs and outputs by dividing the levels obtained by the e�ciency of DMU 2. This focus can then
be used to set targets primarily for outputs rather than reduction of inputs.

Alternate Formulation

There is another, probably more common formulation, that provides the same information. We
can think of DEA as providing a price on each of the inputs and a value for each of the outputs.
The e�ciency of a DMU is simply the ratio of the inputs to the outputs, and is constrained to be
no more than 1. The prices and values have nothing to do with real prices and values: they are an
arti�cial construct. The goal is to �nd a set of prices and values that puts the target DMU in the
best possible light. The goal, then is to

Max uT Y0
vTX0

s:t:
uT Yj

vTXj
� 1; j = 0; :::; n;

uT � 0;
vT � 0:

Here, the variables are the u's and the v's. They are vectors of prices and values respectively.
This fractional program can be equivalently stated as the following linear programming problem

(where Y and X are matrices with columns Yj and Xj respectively).

Max uTY0

s:t: vTX0 = 1;

uTY � vTX � 0;

uT � 0;
vT � 0:

We denote this linear program by (D). Let us compare it with the one introduced earlier, which
we denote by (P):

Min �

s:t:
P

�iXi � �X0P
�iYi � Y0

� � 0:
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To �x ideas, let us write out explicitely these two formulations for DMU 2, say, in our example.

Formulation (P) for DMU 2:

min THETA

st

-5 L1 - 8 L2 - 7 L3 + 8 THETA >= 0

-14L1 -15 L2 -12 L3 + 15THETA >= 0

9 L1 + 5 L2 + 4 L3 >= 5

4 L1 + 7 L2 + 9 L3 >= 7

16L1 +10 L2 +13 L3 >= 10

L1>=0, L2>=0, L3>=0

Formulation (D) for DMU 2:

max 5 U1 + 7 U2 + 10 U3

st

- 5 V1 - 14V2 + 9 U1 + 4 U2 + 16 U3 <= 0

- 8 V1 - 15V2 + 5 U1 + 7 U2 + 12 U3 <= 0

- 7 V1 - 12V2 + 4 U1 + 9 U2 + 13 U3 <= 0

8 V1 + 15V2 = 1

V1>=0, V2>=0, U1>=0, U2>=0, U3>=0

Formulations (P) and (D) are dual linear programs! These two formulations actually give the
same information. You can read the solution to one from the shadow prices of the other. We will
not discuss linear programming duality in this course. You can learn about it in some of the OR
electives.

Exercise 85 Consider the following baseball players:
Name At Bat Hits HomeRuns

Martin 135 41 6
Polcovich 82 25 1
Johnson 187 40 4

(You need know nothing about baseball for this question). In order to determine the e�ciency
of each of the players, At Bats is de�ned as an input while Hits and Home Runs are outputs.
Consider the following linear program and its solution:

MIN THETA

SUBJECT TO

- 187 THETA + 135 L1 + 82 L2 + 187 L3 <= 0

41 L1 + 25 L2 + 40 L3 >= 40

6 L1 + L2 + 4 L3 >= 4

L1, L2, L3 >= 0
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Adjustable Cells

Final Reduced Objective

Cell Name Value Cost Coefficient

$B$10 THETA 0.703135 0 1

$B$11 L1 0.550459 0 0

$B$12 L2 0.697248 0 0

$B$13 L3 0 0.296865 0

Constraints

Final Shadow Constraint

Cell Name Value Price R.H. Side

$B$16 AT BATS 0 -0.005348 0

$B$17 HITS 0 0.017515 40

$B$18 HOME RUNS 0 0.000638 4

(a) For which player is this a DEA analysis? Is this player e�cient? What is the e�ciency
rating of this player? Give the \virtual producer" that proves that e�ciency rating (you should
give the At bats, Hits, and Home Runs for this virtual producer).

(b) Formulate the linear program for Jonhson using the alternate formulation and solve using
Solver. Compare the \Final Value" and \Shadow Price" columns from your Solver output with the
solution given above.

12.4 Applications

The simple bank example described earlier may not convey the full view on the usefulness of DEA.
It is most useful when a comparison is sought against "best practices" where the analyst doesn't
want the frequency of poorly run operations to a�ect the analysis. DEA has been applied in
many situations such as: health care (hospitals, doctors), education (schools, universities), banks,
manufacturing, benchmarking, management evaluation, fast food restaurants, and retail stores.

The analyzed data sets vary in size. Some analysts work on problems with as few as 15 or 20
DMUs while others are tackling problems with over 10,000 DMUs.

12.5 Strengths and Limitations of DEA

As the earlier list of applications suggests, DEA can be a powerful tool when used wisely. A few of
the characteristics that make it powerful are:

� DEA can handle multiple input and multiple output models.

� It doesn't require an assumption of a functional form relating inputs to outputs.

� DMUs are directly compared against a peer or combination of peers.

� Inputs and outputs can have very di�erent units. For example, X1 could be in units of lives
saved and X2 could be in units of dollars without requiring an a priori tradeo� between the
two.
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The same characteristics that make DEA a powerful tool can also create problems. An analyst
should keep these limitations in mind when choosing whether or not to use DEA.

� Since DEA is an extreme point technique, noise (even symmetrical noise with zero mean)
such as measurement error can cause signi�cant problems.

� DEA is good at estimating "relative" e�ciency of a DMU but it converges very slowly to
"absolute" e�ciency. In other words, it can tell you how well you are doing compared to your
peers but not compared to a "theoretical maximum."

� Since DEA is a nonparametric technique, statistical hypothesis tests are di�cult and are the
focus of ongoing research.

� Since a standard formulation of DEA creates a separate linear program for each DMU, large
problems can be computationally intensive.

12.6 References

DEA has become a popular subject since it was �rst described in 1978. There have been hundreds
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The �rst paper was the original paper describing DEA and results in the abbreviation CCR
for the basic constant returns-to-scale model. The Seiford and Thrall paper is a good overview of
the literature. The other papers all introduce important new concepts. This list of references is
certainly incomplete.

A good source covering the �eld of productivity analysis is The Measurement of Productive
E�ciency edited by Fried, Lovell, and Schmidt, 1993, from Oxford University Press. There is also
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a recent book from Kluwer Publishers, Data Envelopment Analysis: Theory, Methodology, and
Applications by Charnes, Cooper, Lewin, and Seiford.

To stay more current on the topics, some of the most important DEA articles appear in Man-
agement Science, The Journal of Productivity Analysis, The Journal of the Operational Research
Society, and The European Journal of Operational Research. The latter just published a special
issue, "Productivity Analysis: Parametric and Non-Parametric Approaches" edited by Lewin and
Lovell which has several important papers.


